RESULTS OF AN INVENTORY SURVEY WITH SUBSURFACE TESTING FOR PROPERTIES LOCATED AT BREAKERS POINT, MT. OLOTELE AND AMANAVE, ISLAND OF TUTUILA, AMERICAN SAMOA APRIL 1999

Prepared for: Ms. Faye Ala'ilima-Rose
American Samoa Telecommunications
6120 Windward Parkway, Suite 200
Alpharetta, GA 30005
Telephone: (770) 752-7033

Prepared by: Archaeological Consultants of the Pacific, Inc.
Michelle Elmore, B.A.
Joseph Kennedy, M.A.
59-624 Pupukea Road
Haleiwa, Hawaii 96712

Inventory Reports Data Recovery Reports Research Design Documents Monitoring Due Diligence Work Historical Studies Cultural Studies Buried Treatment Plans Preservation Plans Interpretive Reconstructions Restorations Qualified Expert Witness Testimony
59-624 Pupukea Road Haleiwa, Hawaii 96712 Phone: 638-7442/Fax: 638-0703
Results of An Inventory Survey with Subsurface Testing for Properties Located at Breakers Point, Mt. Olotele and Amanave, Island of Tutuila, American Samoa
April 1999

Prepared for: Ms. Faye Alailima-Rose
American Samoa Telecommunications
6120 Windward Parkway, Suite 200
Alpharetta, GA 30005
Telephone: (770) 752-7033

Prepared by: Archaeological Consultants of the Pacific, Inc.
Michelle Elmore, B.A.
Joseph Kennedy, M.A.
Abstract

An Inventory Survey with subsurface testing has been conducted at three properties located at Breakers Point, Mt. Olootele and Amanave, on the Island of Tutuila, American Samoa. The purpose of these investigations was to determine if significant historic properties exist within the project limits and if present, properly document and evaluate those sites.

Investigations took the form of a surface survey and subsurface testing including shovel test pits and a test unit. Shovel test pits were excavated at Breakers Point. One test unit and one shovel test pit were excavated at Amanave. No excavations were conducted at Mt. Olootele. One site was documented (Site AS-32-005), a World War II foundation located at Mt. Olootele.

Based upon the results of the current investigations, Archaeological Consultants of the Pacific, Inc. recommends that a determination be made that future construction activities would have an "adverse effect" on Site AS-32-005 at Mt. Olootele under the Advisory Council Regulations, 36 CFR 800.9(b)(1). Archaeological Consultants of the Pacific, Inc. recommends that mitigation take place in the form of avoidance of the site. The site should be marked with flagging tape prior to construction endeavors. The construction crew should be informed of the presence of the site and given instructions that the site should be avoided during construction activities. No further archaeological investigations are necessary.
Table of Contents

Abstract ...................................................................................................................... i
List of Figures .......................................................................................................... iii
List of Plates ........................................................................................................... iv
Section 1: Introduction ............................................................................................ 1
Section 2: Environmental Setting ............................................................................ 6
  Section 2.1: The Samoan Archipelago ................................................................. 6
  Section 2.2: Tutuila Island .................................................................................. 6
  Section 2.3: The Subject Property ..................................................................... 8
Section 3: Historic Background .............................................................................. 13
  Section 3.1: Previous Archaeology .................................................................... 13
  Section 3.2: Settlement Pattern and Land Use History ....................................... 16
  Section 3.3: Historic Background of Breakers Point ......................................... 17
  Section 3.4: Land Use at Amanave and Archaeological Investigations in the Vicinity ............................................................................................................. 17
  Section 3.5: Land Use at Mt. Olotele .................................................................. 18
  Section 3.6: Expected Finds .............................................................................. 18
Section 4: Research Design .................................................................................... 18
Section 5: Methodology ........................................................................................ 21
Section 6: Findings ................................................................................................ 24
Section 7: Discussion and Significance Criteria Evaluations ................................ 31
Table 1: Summary of Significance Criteria Evaluations ....................................... 34
Conclusion ................................................................................................................. 35
Bibliography ............................................................................................................ 36
Appendix A ............................................................................................................. A1
List of Figures

Figure 1: Locations of the Project Areas on a Map of Tutuila ...........................................2
Figure 2: Location of the Project Area at Breakers Point on a U.S.G.S. Map.........................3
Figure 3: Location of the Project Area at Amanave on a U.S.G.S. Map.............................4
Figure 4: Location of the Project Area at Mt. Olotele on a U.S.G.S. Map...............................5
Figure 5: Project Area at Breakers Point ..............................................................................10
Figure 6: Project Area at Amanave ......................................................................................11
Figure 7: Locations of the Project Area and Site AS-32-005 at Mt. Olotele.............................12
Figure 8: Project Area at Breakers Point Showing Locations of Shovel Test Pits..............25
Figure 9: Project Area at Amanave Showing Locations of Test Unit and Shovel Test Pit .................................................................................................................27
Figure 10: Profile of Test Unit 1, Amanave (Northeast Face) ..............................................28
Figure 11: Profile of Test Unit 1, Amanave (Southeast Face) .................................................29
Figure 12: Plan View of Site AS-32-005 (World War II Foundation at Mt. Olotele) ..........32
List of Plates

Plate 1: Excavation of TU1 at Amanave, View Facing Southeast ........................................... 23
Plate 2: View Facing Northeast of Graveyard at Breakers Point .............................................. 23
Plate 3: View to the Southeast of TU1 at Amanave ............................................................... 30
Plate 4: View to the Northwest of TU1 at Amanave ............................................................... 30
Plate 5: View of Site AS-32-005 Facing Northeast (World War II Foundation at Mt. Olotele) ................................................................................................................................................. 32
Results of an Inventory Survey With Subsurface Testing For Properties Located at Breakers Point, Mt. Olotele and Amanave, Island of Tutuila, American Samoa

Section 1: Introduction

At the request of Ms. Faye Ala’ilima-Rose, representing American Samoa Telecommunications, Archaeological Consultants of the Pacific, Inc. (ACP) has conducted an Inventory Survey with subsurface testing for properties which have been proposed for the construction of telecommunication towers. The subject properties are located at Breakers Point, Mt. Olotele and Amanave on the Island of Tutuila, American Samoa (see Figures 1-4).

The purpose of these archaeological investigations was to perform the tasks and meet the requirements specified by the National Historic Preservation Act (NHPA) and ASHPO. The investigations would allow for the evaluation of the significance of potential historic resources located on a property including their eligibility for inclusion in the National Register of Historic Places. These investigations also allow for the making of recommendations concerning the mitigation of the impact of future construction activities upon potentially significant historic resources.

The scope of work (determined by ASHPO) called for the excavation of twelve shovel tests at Breakers Point, two 1 x 2 meter (m) excavation units dug in 10 centimeter (cm) levels at Amanave (or only 1 unit if cultural materials are present), and a surface survey of historic properties at Mt. Olotele. Soils were to be sifted through 1/4 inch mesh screen and all cultural materials collected for analyses. Photographs were to be taken of each location and representative profiles drawn of the test units.

Archaeological investigations were conducted from January 18-21, 1999. All field work was conducted under the direction of the principle investigator and field supervisor, Joseph Kennedy, M.A., who was assisted by Michelle Elmore, B.A. and Steve Weggelaar. All notes and materials collected are being curated at the ACP office located at 59-624 Pupukea Road, Haleiwa, Hawaii.

Inventory Survey investigations have documented the presence of one historically significant site (Site AS-32-005). These investigations have concluded that the construction activities would have an "adverse effect" on Site AS-32-005 at Mt. Olotele. Recommendations have been made that no further archaeological investigations are necessary for this construction project, though mitigation should take place in the form of avoidance of the site.
Figure 1: Locations of the Project Areas on a Map of Tutuila

source: Kirch and Hunt 1993

source: Clark & Herdrich 1986
Figure 2: Location of the Project Area at Breakers Point on a U.S.G.S. Map

Figure 3: Location of the Project Area at Amanave on a U.S.G.S. Map

Figure 4: Location of the Project Area at Mt. Olootele on a U.S.G.S. Map

Section 2: Environmental Setting

Section 2.1: The Samoan Archipelago

The Samoan Archipelago is a politically divided chain of islands in the central South Pacific about 4200 kilometers (km) [2600 miles (mi)] southwest of Hawaii and 1000km (620mi) northeast of Fiji. It is located between Geographic Grid Coordinates 168° to 173°W and 13° to 15°S. The large islands of Upolu and Savai'i, along with the smaller islands of Manono and Apolima, make up the independent nation of Samoa (formerly known as Samoa I Sisifo or Western Samoa). To the east lies American Samoa, a U.S. territory. Tutuila is the largest island in American Samoa covering an area of 53 square miles. Tutuila and the small neighboring island of Aunu'u form one of the two subgroups which help make up American Samoa (see Figure 1). About 100km (60mi) east of Tutuila is the Manu'a subgroup of Ofu, Olosega, and Ta'u. Tiny Rose Atoll, about 160km (100mi) further east, represents the easternmost edge of the archipelago. Swains Island 375km (225mi) to the northwest, though geographically a part of the Tokelau Islands, is the northernmost political possession of American Samoa.

Section 2.2: Tutuila Island

Built by volcanic activity along the crest of the submarine Samoan Ridge, the Samoan Islands are a typical example of "hotspot" progressive volcanism stretching from northwest to southeast. The Samoan Ridge itself is made up of billowy basalt pahoehoe flows which have built up 3 to 5km from the ocean floor to rise above sea level forming islands. K-Ar dates for Tutuila reveal an age of 1.26 million years (McDougall 1985: 318-319) placing its formation entirely within the Pleistocene epoch of the Quaternary period.

According to Stearns (1944), Tutuila was created by a series of five volcanoes which formed along two or three parallel rifts of the Samoan Ridge. Gently sloping shield volcanoes were formed from frequent outpourings of thin-bedded basalt lava flows which, in at least two instances, are believed to have collapsed forming large caldera (Atlas 1981). This stage in the formation of the island is believed to have been followed, at some point in time, by the cessation of volcanism leading to a long period of erosion, slow subsidence and coral reef formation. High sea cliffs and deep valleys were incised into the island during this period of volcanic quiescence which is believed to have lasted several hundred thousand years. During the later stages of the Pleistocene epoch, sea level changes associated with melting ice caps covered the sea cliffs (and a barrier reef that had formed during the lower stand of the oceans) and filled the deep valleys. The late Pleistocene and/or early Holocene also saw the return of volcanic activity during which time the Tafuna Plain and Aunu'u were formed.
From the time of the height of the Last Glacial about 17,000 B.P. (years before present) to the time of the Holocene Climatic Optimum around 6000 to 4000 B.P., sea levels rose approximately 130m reaching up to 2m above current levels. During this period the islands of the Pacific were believed to have been hotter and drier than either earlier or later times (Nunn 1994). It was during the Holocene Climatic Optimum (6000 to 4000 B.P.) that, for the first time in 12,000 years, a relative stability of sea level in relation to land and the absence of protective reefs resulted in greatly increased lateral shoreline erosion allowing for the formation of "coastlines comprising a broad shore platform" (Nunn 1994:16). It is following the relative stabilization of sea levels and the formation of shoreline platforms that the colonization of Western Polynesia is believed to have occurred.

Following the Holocene Climatic Optimum the climate of Tutuila and the rest of the South Pacific became somewhat cooler and wetter and sea levels slowly fell from their peak of around 2m above current levels to the levels seen today. On Tutuila, erosional processes continued to help form the island's changing coastlines through coastal terrace formation as well as the filling of embayments with alluvium creating valley floors. Around 3000 B.P., Tutuila was colonized by a population that was spreading across the Pacific. Colonization greatly effected the geomorphology of the island. It is believed that the progradation of both coastal terraces and valley floors was accelerated by an increased sedimentary budget caused by deforestation and clearing conducted by the human occupants.

Today Tutuila falls within the Tropical Climate Zone characterized by a maritime climate with abundant rainfall and warm, humid days and nights. Trade winds blow predominantly from the east. Records from the airport at Tafuna indicate a mean annual rainfall of 3100 millimeters (mm)[124 inches ("")] (Nakamura 1984:Table 1). Rainfall can vary greatly over small distances, however, due to topographical differences, with some areas receiving as much as 6200mm (250") in a year.

Mean daily temperature is reported at 80.0°F (26.7°C) ranging from a mean daily maximum of 85.4°F to a minimum of 74.6°F (Nakamura 1984). Humidity is generally high during day and night ranging between 80 and 86 percent.

Hurricanes and cyclones strike the island at irregular intervals, often after a prolonged spell of hot weather. The effect of such storms varies depending on the intensity of the storm and the path of the storm in relation to the islands. Evidence of hurricanes in the archaeological record can be found in the form of anomalous layers of gravel and rocks deposited by high energy storm surges. The effects of such storms on the prehistoric populations were certainly as serious as they have been in recorded history.

The distribution of floral zones on Tutuila is largely dependent on the amount of human disturbance which has occurred in an area which, in turn, is often limited by
topography. Additional edaphic, microclimatic, and drainage conditions also have a lesser effect on the distribution of floral communities. On the coastal plains and in areas whose slopes are not severe, human activity has significantly modified the natural vegetation (Atlas 1981). The Atlas describes these areas as "Managed Land" or "Disturbed Forest". Within Managed Lands, shifting gardens of taro (Colocasia esculenta), yam (Dioscorea alata), and other crops form floral communities with extraneous secondary growth and stands of trees (mainly coconut [Cocos nucifera], breadfruit [Artocarpus communis], and banana [Musa sp.]). Many of the species found in these communities are known to have been introduced with the first immigrants to the islands.

A large portion of Tutuila is covered by Managed Land and Disturbed Forest although areas of undisturbed vegetation are also known to exist (Atlas 1981). Locations at which undisturbed floral communities exist include areas of "Coastal and Littoral Vegetation," "Lowland and Montane Vegetation" and "Montane Scrub". The steep slopes and dense vegetation found in many of the undisturbed areas preclude any other than occasional utilization by humans.

Typical of island ecosystems, the fauna of Tutuila is impoverished in terrestrial vertebrates with a somewhat higher diversity of invertebrate species. The highest vertebrate diversity is among the avifauna with several permanent resident species along with seasonal migrants and visiting seabirds. As on other Polynesian islands, the avifauna diversity has been drastically reduced since human occupation began.

There is one indigenous mammal, the fruit bat (Pteropus samoensis). Other mammals, the Polynesian rat (Rattus exulans), dog (Canis familiaris), pig (Sus scrofa), and more recently, the housetcat (Felis domesticus) were all introduced. Lizards of the families Gekkonidae and Scincidae are the only other indigenous terrestrial vertebrates. Marine turtles (Chelonia mydas and Eretmochelys imbricata) are infrequent visitors today, although they were certainly more common in the past.

Much of Tutuila's coastline is surrounded by fringing coral reef 40 to 150m wide. This complex ecosystem supports over 800 species of fish and a wide variety of invertebrates (Jordan & Seale 1906) that are heavily exploited by humans. Finally, in the open ocean beyond the coral reef are a lesser variety of fish, dolphins and, seasonally, whales.

Section 2.3: The Subject Property

Three separate parcels make up the subject property. These parcels are located at Breakers Point, Amanave and Mt. Olotele in the counties of Sua, Lealataua and Leasina on the Island of Tutuila, American Samoa. The project area at Breakers Point is located at geographic grid coordinates 14° 17' 28"S by 170° 31' 49"W and UTM (Universal
Transverse Mercator) coordinates 8416500mN by 525500mE. The elevation is 170 feet (ft) above sea level (ASL). The topography consists of a finger ridge jutting out to sea at the mouth of Pago Pago Harbor, having a narrow level peak with extremely steep slopes along the edges (see Figure 2). The project area is on a level section along the ridge crest in the middle of a banana patch. This area is bounded by an access road on the west, a satellite dish enclosed by a fence to the north, a steep slope to the east and a graveyard to the south (see Figure 5). There are towers and a building further to the south before the peak drops straight down to the ocean. The dimensions of the project area are approximately 115.5 square meters (0.03 acres). Nakamura (1984) describes the soils in the area of Breakers Point as a Fagasa family-Lithic Hapludolls-Rock outcrop association. This association consists of very steep ridges and mountainsides. Permeability of the soils is moderately rapid, and runoff is very rapid. The current investigations by ACP found the soils at Breakers Point to be consistent with this association.

The project area at Amanave is located at the western end of the island at geographic grid coordinates 14° 19' 55"S by 170° 50' 1"W and UTM coordinates 8415700mN by 518600mE. The elevation is 14ft ASL. The topography consists of a coastal plain (see Figure 3). The project area, an undeveloped grassy area, is approximately 40m from the ocean across from Utusiva Rock and is bounded by an access road to the north, a private residence to the east, a volleyball court to the south and to the west is Route 1 and the ocean (see Figure 6). The dimensions of the project area are approximately 69.6 square meters (0.02 acres). Nakamura (1984) describes the soils in this area as Urban land-Ngedebus complex. This complex consists of coastal plains with 0-5% slopes. According to Nakamura (1984), "much of the area [Urban land] has been leveled and filled with coral fragments, sand, cinders, and other material." The Ngedebus soils have rapid permeability and slow runoff. The current investigations by ACP found the soils at Amanave to be consistent with this complex.

The project area at Mt. Olotele is located in the center of the Western District at geographic grid coordinates 14° 19' 8"S by 170° 45' 52"W and UTM coordinates 8419600mN by 536400mE. The elevation is 1617ft ASL. The topography consists of a mountain peak with steep surrounding slopes (see Figure 4). The project area is located on an undeveloped grassy level spot along the peak and is bounded by an access road to the west, an undeveloped grassy area to the north, a steep slope to the east and a small undeveloped grassy area to the south (see Figure 7). There are towers and a building on the opposite side of the road. The dimensions of the project area are approximately 58.7 square meters (0.01 acres). Nakamura (1984) describes the soils in this area as Oloava silty clay loam with 40-100% slopes on mountainsides and cinder cones. The soils have a moderately rapid permeability and rapid runoff. ACP did not conduct subsurface investigations in this location and therefore could not make any determinations of soil types there.
Figure 5: Project Area at Breakers Point

Telecom Project
source: American Samoa Telecommunications (no date)
Figure 6: Project Area at Amanave

Subject Property

170° 50' 0.9" W
14° 19' 55" S
14 ft ASL

Scale: NTS

Telecom Project

source: American Samoa Telecommunications 1998
Figure 7: Locations of the Project Area and Site AS-32-005 at Mt. Olotele

Source: American Samoa Telecommunications (no date)
Section 3: Historic Background

The prehistory of Samoa is intimately linked with that of its neighboring islands and Polynesia as a whole. It has been suggested that a seafaring people, traveling from the islands of Southeast Asia, spread eastward throughout the islands of the South Pacific (Kirch & Green 1987; Jennings 1979). Western Polynesia is believed to have been rapidly explored and colonized from about 1000 to 500 B.C. (Kirch & Hunt 1993:1). These groups developed a unique material culture that has become archaeologically known as the Lapita Cultural Complex. This name derives from a site at which the distinctive pottery that was crafted by these groups was first categorized. This cultural complex has become well documented over the past several years and will not be reviewed further in this paper. Thus, groups belonging to the Lapita Cultural Complex are believed to be the first inhabitants of Samoa. Over the millennia, these groups have evolved into a population with a culture and adaptations unique to Samoa with its own mythology and cosmology.

Significant changes in Samoan material culture are evident in the archaeological record from about 1000 B.C. to 1 A.D.. Ceramics, in particular, became less decorated or undecorated. Ceramic vessel forms became less elaborate and variable. A Polynesian Plain Ware is recognized as dating to about 1 A.D.. Ceramic production and use was thought to have ceased after c. 300 A.D.. Recent evidence, however, suggests that ceramics may have been utilized for as many as one thousand additional years in Samoa's prehistory (Clark 1993; Kirch & Hunt 1993, Moore & Kennedy in prep).

Tutuila has also been believed to be an important source for good quality basalt. The Tataga-matau basalt quarry has been described as a production center for fine-grained basalt preforms and adzes (Best, Leach, & Witter 1989). A system which likely utilized highly organized and managed labor as well as craft specialists may have developed in order to produce export quality preforms and adzes. This has implications concerning Samoa's late prehistoric trade networks as well as the organizational configurations, strategies of production and management of resources and goods (Best, Sheppard, Green & Parker 1992). Samoa's late prehistory is thought to be characterized by the introduction of architectural monuments (particularly star mounds, also known as tia 'ave or tia seu lupe, and ridge top fortifications), which not only served ritual, symbolic and defensive purposes, but are also suggested to represent the rise of powerful chiefdoms (Herdrich 1991, Kirch and Hunt 1993:4).

Section 3.1: Previous Archaeology

Early accounts of an archaeological nature occurred when Buck (1930) reported on Samoan material culture in the first half of this century. Although a few archaeological sites were mentioned by Buck, no systematic surveys or detailed descriptions with site locations were provided. There are additional accounts of Samoan
culture by Kramer (1902) and Handy & Handy (1924) that provide ethnographic information important to archaeology. Thompson (1927) and Freeman (1943, 1944a, b, and c) provided some descriptions of Samoan field monuments as well. The earliest controlled archaeological investigations occurred in 1957 when J. Golson spent nearly six weeks on the island of Upolu in Western Samoa where initial survey and limited test excavations were conducted (Green & Davidson 1969).

Other early work in Western Samoa was documented by Green and Davidson who compiled lengthy volumes covering archaeological investigations there (1969 & 1974). These include detailed descriptions as well as diagrams and photographs of numerous sites, field monuments, archaeological collections, excavations, features and artifacts. A typology for Samoan lithic tool kits was also created (Green & Davidson 1969).

In American Samoa, modern archaeological investigations began with Kikuchi in the early 1960's. His survey relied heavily on informant testimony. Many of the sites recorded were not visited (Kikuchi 1963). However, a total of 150 sites were described including villages, house platforms, platforms, walls, roads, commemorative stone-heaps, forts, caves, springs, wells, propitiatory stones (or spirit stones), an adze quarry, petroglyphs, burials, unknown structures, temples and shrines, sacred areas, and whetstones used for grinding and polishing adzes as well as for grinding ava (Kikuchi 1963:157-164). Kikuchi and Sinoto also conducted test excavations at nine post-contact period sites, many in the Leone area of Tutuila (Emory & Sinoto 1965).

In the 1970's, a reconnaissance survey of known sites and unexplored areas on Tutuila was undertaken by Janet Frost (1978). Test excavations at seven sites were included. Eight stone mounds near Pava'ia'i were located and described (Frost 1978:64-75).

One of the larger projects conducted in American Samoa since 1985 was the "Eastern Tutuila Archaeology Project" carried out under the direction of Jeffrey T. Clark over two seasons, the first in 1986 (Clark & Herdrich 1988) and the second in 1988 (Clark 1989). Clark & Herdrich conducted a selected reconnaissance of areas on Tutuila. This was conducted to gain further understanding of settlement systems. They recognized 176 new sites, including the first known residential site on Tutuila having traditional ceramics in its deposits. This site was located at 'Aoa on the northeastern coast of Tutuila. The 'Aoa site revealed two significant periods of occupation. The lower component (occupation beginning around 3000 B.P.) contained abundant volcanic glass and undecorated pottery (Clark & Herdrich 1993:157, 170, 177).

By compiling and reporting information gathered during this project, including a review of previous studies which focused on bays along the northeastern coast of Tutuila, the researchers were able to substantially increase our knowledge of Samoan prehistory. Herdrich (1991; see also Herdrich & Clark 1993) has also researched over 151 Samoan star mounds and contributed significantly towards a greater understanding of these rather enigmatic structures.
Another significant contribution to our understanding of Samoan prehistory came when Leach, Witter and Best conducted archaeological excavations as well as intensive survey of sites located on a ridge spur behind the village of Leone known as the Tatagamatau adze quarry (Leach & Witter n.d.; 1987; 1990; Best et al. 1989; see also Best et al. 1992 for discussions concerning Samoan basalt adzes found as far as Fiji, Tokelau, and Outer Eastern Solomon Islands). Star mounds, possible fortifications, trenches and terraces were identified and evaluated. The research also included revisions to previous adze typologies and adze manufacturing technologies.

In the 1990's, several cultural research management surveys have been conducted on Tutuila. On the Tafuna Plain, a series of investigations have been conducted in association with the Tafuna Plains Sewage Collection System (Best 1992, Shapiro & Cleghorn 1994, Latinis, Moore & Kennedy 1996a, and Moore & Kennedy 1998). These investigations identified numerous sites including inland habitation sites containing Polynesian Plainware, of which one site (AS-31-106) was dated to a most probable age range of between A.D. 1414 and 1529 (Moore & Kennedy 1998). The findings of these studies indicate that the Tafuna Plain may have been more intensively utilized in the pre-contact period than had been originally believed by archaeologists.

ACP has also conducted several investigations at locations along the northern and eastern sides of the island. At Lau'aga'e, near Tula on the eastern end of the island, a basalt quarry (Site AS-21-100) was documented which is believed to represent a prehistoric source of lithic material utilized by the local population (Moore & Kennedy 1996a). At Fagasa, ACP documented five sites including several foaga (grinding stones) located in a stream bed and a buried stone pavement (Site AS-26-12) which was determined to have been utilized as a lithic workshop between 1629 and 1681 A.D. (Moore & Kennedy 1996b). Interestingly, at Sa'ilele, ACP confirmed the presence of an important religious site (Site AS-23-2; Clark 1980) called a malu malu which had been believed to have been destroyed when first described by Kikuchi in 1963 (Latinis, Moore & Kennedy 1996b).

Within Pago Pago Harbor there has been very little previous archaeological work conducted. Kikuchi reported the presence of four culturally significant sites in and around the harbor; an abandoned village, two stone islets which legendarily represent petrified giants, and a burial site containing traditional artifacts (Sites AS-25-1 through 4; Clark 1980). In addition, several post-contact historic sites have been assigned Territorial site numbers including the former Courthouse, two former naval buildings, the Governor's house, a former school house, and two naval gun emplacements located at Blunt's Point and Breakers Point (Sites AS-25-5 through 11; Clark 1980). Of these, Sites AS-25-5 through 9 have been placed in the National Register of Historic Places.

A cultural resource management survey was conducted by ACP within Pago Pago Harbor at Aua in 1997. During those investigations no significant historic properties were identified (Moore & Kennedy 1997a). Subsurface testing was conducted where soil deposits were present in order to identify potential subsurface cultural deposits and to
document the stratigraphy present, however, all of the excavations conducted encountered fill containing modern debris.

Later in 1997, archaeological investigations were conducted by ACP in association with the Harden Tank Farm at the American Samoa Petroleum Storage Facility in Utulei (Moore & Kennedy 1997b). A surface survey was conducted in order to identify any historic or prehistoric sites on the property. A World War II pill box (Site AS-25-12) was located along with a modern grave. No prehistoric sites were identified.

Finally, in 1998, an Inventory Survey with subsurface testing was conducted by ACP in order to investigate potential historic properties, in particular the remains of the original Fitafita barracks which were buried in a landslide in 1907, along the Route 1 Re-construction corridor (Elmore et al. 1999 DRAFT). During the subsurface testing, only fill materials were encountered above a sterile basal layer.

Section 3.2.: Settlement Pattern and Land Use History

Since the initial colonization of the Samoan Islands, approximately three millennia ago, there is evidence which suggests that settlement pattern changes have taken place over time. It has been suggested that the first settlements on the islands were centered along the coast and that at some time in the past, the loci of habitation spread inland. Following this, around the time of Western contact, the bulk of the population returned to coastal habitation areas.

The archaeological record accords with this suggested pattern. This lead Davidson to suggest that prior to western contact, the population was dispersed across the landscape with the historic pattern of coastal settlement believed to be a modern development. Davidson stated:

The bulk of the modern population lives in coastal settlements, and this has been the case since the 1830's. There is abundant archaeological evidence, however, that coastal concentration was a response to the beginning of European contact, and that until the early nineteenth century the population was much more evenly distributed over both coastal and inland areas in a form of dispersed settlement, probably with clusters around the residences of people of high status (Davidson in Jennings 1979:96).

Specifically, in American Samoa, changes in settlement patterns over time have become increasingly well documented in the archaeological record. The earliest settlements, thought to be recognizable by the inclusion of ceramics in their cultural deposits, have been recorded at coastal locations (or locations thought to have previously been near the coast)(Clark 1989; Kirch & Hunt 1993). Later prehistoric settlement has been documented in the uplands, along ridges and at the peaks of mountains (Clark and
Herdrich 1993). Of the inland sites, a conspicuous feature type along ridges and some plain areas is the iia 'ave (or star mound), although various site types including permanent residential sites, defensive sites and resource exploitation sites have also been identified.

Section 3.3: Historic Background of Breakers Point

Breakers Point, known traditionally as Fa'ata'aga Point, stands at a strategic location at the mouth of Pago Pago Harbor. While no traditional structures or features have been documented on the point, it seems likely that this location would have been important for defense strategies during traditional times. The area above Breakers Point became important during the present century for those purposes with the onset of World War II.

Two naval gun emplacements were constructed at Blunt's and Breakers Point as a defense strategy for the protection of Pago Pago Harbor during World War II. Clark (1980) describes the naval gun emplacement near Breakers Point (located on the north side of the road), Site AS-25-10:

This site is located on Papatele Ridge, above Breakers Point. It consists of a large naval rifle and surrounding concrete bunker... The mounting carriage of the gun is fastened to a concrete slab. This is one of several gun implanments [sic] built by the U.S. Navy in 1941. The positioning of the gun on the southeast point of the Pago Pago Harbor coast allowed for defense of this Key Pacific port.

Additionally, a World War II bunker was constructed into the side of Breakers Point for the purpose of weapons storage.

Breakers Point is shown on the 1981 Atlas of American Samoa to be undeveloped and unused land, however, this is clearly not the case. The top of Breakers Point is fully developed with communications towers, a satellite dish, a graveyard and a lighthouse. Specifically on the subject property, there is a banana patch.

Section 3.4: Land Use at Amanave and Archaeological Investigations in the Vicinity

The land use for the area around the subject property at Amanave consists of residential settlement comprised of smaller agglomerated areas and villages (Atlas 1981). No previous archaeological investigations have taken place in Amanave.

ACP conducted an Inventory Survey with subsurface testing in 1998 in the village of Poloa on the north shore of Tutuila, approximately 1 km from Amanave (report in
preparation). Two deeply buried cultural lenses were identified. A radiocarbon sample dated to a most probable range of 1470-1520 A.D. (1 sigma) (Site AS-34-53).

Section 3.5: Land Use at Mt. Olotele

The area around Mt. Olotele consists of undeveloped and unused land consisting of "vacant floor area" (possibly abandoned former agricultural land) (Atlas 1981). However, the peak of Mt. Olotele is developed, containing communication towers and a building. No previous archaeological investigations have been conducted in the vicinity of the project area.

Section 3.6: Expected Finds

Based upon the information reviewed above, the expected finds for the subject properties can be surmised. At Breakers Point, it is unlikely that any pre-contact surface structures would be present. Expected finds, therefore, would consist of historic structures, or their remains, as well as possible subsurface traditional deposits, and possibly fill materials which could contain traditional artifacts. Additional marked or unmarked graves associated with the nearby cemetery may also be present.

Similarly at Amanave, it would be unlikely that any pre-contact surface structures would be present. Expected finds would likewise consist of historic structures, or their remains, as well as possible subsurface traditional deposits, and possible fill materials which could contain traditional artifacts.

An historic property (a World War II foundation) is known to exist at Mt. Olotele. Given the land development related to the World War II foundation as well as the modern communication towers, it is unlikely that any pre-contact surface structures would be present. Additional historic structural surface remains related to World War II may be present. Because no subsurface testing was called for in the scope of work, no subsurface cultural materials would be found.

Section 4: Research Design

The current investigations consist of a Phase I and II Cultural Resource Evaluation of property located at Breakers Point, Amanave and Mt. Olotele which is planned to be utilized for a telecommunications tower construction project. In the ASHPo's Cultural Resource Evaluation process the purpose of these phases is to identify (Phase I) and evaluate (Phase II) potentially significant historic properties within the boundaries of the subject property as required by Section 106 of the National Historic Preservation Act of 1966 as amended, and particularly 36 CFR Part 800 of the Advisory
Council Regulations concerning the protection of historic and cultural properties. Research of this kind is important with regard to both territorial and regional research goals.

**Territorial Goals**

Territorial goals include the following:

1) The development of an inventory of significant historic properties.
2) The evaluation of historic and prehistoric sites relative to the criteria for inclusion in the National Register of Historic Places.
3) The nomination of eligible properties to the National Register of Historic Places.
4) The protection of significant historic and prehistoric properties from significant negative impacts.

Research conducted during the course of identification and evaluation phase investigations would be expected to contribute to these territorial goals in the following ways: 1) by conducting a systematic archaeological survey of a subject property, any historic or prehistoric sites located within the parcel would be identified; 2) by conducting a systematic evaluation of sites identified in the survey area, a determination of their significance relative to the National Register of Historic Places criteria would be able to be made (the first step in the process of nominating sites to the National Register of Historic Places); and 3) following the identification and evaluation of potentially significant historic properties an assessment of the potential impact of the proposed project on sites identified as significant would be able to be made and, where necessary, recommendations would be made for site protection or for the mitigation of the potential impact to a site. In addition, documenting the location of significant historic sites will contribute to the protection of these sites in the event of future developments.

**Regional Goals**

Regional goals include the following:

1) Gaining an understanding of trade relationships between various island groups.
2) Constructing a sequence of migration and colonization of island groups to help define the origins of the Polynesian peoples.
3) Documenting settlement patterns as evidence of the evolutionary trajectory of island societies in order to gain understanding of evolutionary mechanisms effecting the development of societies throughout the Pacific.
Research conducted during the course of identification and evaluation phase investigations would be expected to contribute to these regional goals in the following ways: 1) if significant cultural materials are recovered, these materials could be analyzed to determine whether they were of local origin or were made from exotic materials thereby providing information concerning the existence and extent of interisland trade networks with these materials; 2) if significant historic properties are identified which yield datable samples the dating of those samples may provide important evidence for understanding the sequence of migration and colonization in the Pacific; and 3) if significant historic properties are identified the documentation of their locations would make important contributions to the understanding of Samoan settlement patterns. A clearer understanding of Samoan settlement patterns will eventually lead to a better understanding of regional evolutionary mechanisms and trajectories.

Due to the fact that identification and evaluation phase investigations are compliance oriented the investigators were not guided by an explicit theoretical orientation other than a very general scientific and evolutionary perspective. Also, given that this is a compliance investigation it was not guided by explicit hypothesis testing. However, at this level of the Cultural Resource Evaluation process one specific hypothesis does apply. Based upon the historic and archaeological background information summarized above, it is evident that archaeological sites have been identified in areas geomorphologically similar to the current subject property. Therefore it is logical to hypothesize that significant archaeological sites may be present on the subject property. It is this hypothesis that is tested during identification and evaluation phase investigations. A systematic archaeological survey with subsurface testing would be able verify if significant historic properties exist on a property.

The research strategy used in Phase I and II Cultural Research Evaluation investigations is twofold. First, a systematic surface survey accompanied by controlled subsurface testing is to be utilized to adequately identify potential sites located on a subject property. Following the identification of a potentially significant historic property, sufficient amounts of data (such as scaled plans, sketched profiles, photographs, portable artifacts, floral and faunal remains, soil samples, and charcoal samples) are collected through controlled manual excavation to enable an evaluation of a site’s significance and determine its eligibility for inclusion in the National Register of Historic Places.

The strengths of this form of investigation include the following:

1) The survey to identify sites would be intensive and systematic ensuring that all sites within a project area have been identified.

2) Evaluation of sites identified would be thorough. Sufficient data would be collected from potential sites in question to make sound and reasonable evaluations as to their significance and eligibility for placement on the National Register of Historic Places.
The limitations of this form of investigation include the following:

1) First and foremost this form of investigation would be part of a compliance oriented project. Therefore, research would be limited to the defined limits of the subject property. If investigations were guided by purely academic research goals, the survey area would likely have a wider scope and different survey techniques would be used.

2) Phase I (identification) and Phase II (evaluation) Cultural Resource Evaluations inherently limit investigations to only conducting excavations for evaluation purposes. Once enough data has been collected to evaluate a site, it was not possible to collect additional data which would have contributed to answering purely research oriented questions.

Section 5: Methodology

Fieldwork methods consisted of surface and subsurface investigations. The ground surface of the subject property was systematically investigated with a visual inspection in order to determine the presence of surface remnants of historical significance. The subject property was investigated by a pedestrian survey (by a two person crew) consisting of transects spaced 5m apart across the entirety of the subject property. The transects were oriented from north to south. Surface visibility was excellent on each of the subject properties. Breakers Point contained little undergrowth interspersed among banana plants. The ground surface on the subject property at Amanave consisted of a mowed lawn. The subject property at Mt. Olotele also consisted of mowed grass. This allowed for a comprehensive visual examination of the ground surface, with a 2.5m visual distance on either side of the transect, wherein structural remains, grave markers and/or depressions and surface artifacts could be located.

Subsurface investigations took the form of shovel test pits and a manual excavation test unit. Twelve shovel test pits were excavated at Breakers Point which consisted of approximately 50cm diameter pits excavated by shovel to a depth of approximately 100 centimeters below surface (smbs). The shovel tests were systematically placed at intervals of 2m over the entirety of the subject property. All soils were sifted through 1/8th inch mesh screen in order to examine and collect cultural materials from the screen residuum. The excavation of these pits allowed for the determination of the presence of cultural deposits as well as the presence of unmarked graves related to the adjacent graveyard.

The test unit at Amanave consisted of a 1 x 2m pit excavated in 10cm levels to a depth of 1m, after which a shovel test was excavated at the base of the unit to a depth of 150 centimeters below datum (cmdb). Soil was removed by trowel and dust pan and was sifted through 1/8th inch mesh screen in order to examine and collect cultural materials
from the screen residuum (see Plate 1). This allowed for controlled testing of stratigraphic layers in order to collect detailed information concerning archaeological deposits for the purpose of evaluating potential sites. Fill was encountered throughout the test unit. Given the small size of the subject property, it seemed likely that a second test unit would also encounter fill. It was decided that a second excavation unit with careful controlled testing of fill would be futile for the research objectives of the project. For this reason, the original scope of work which called for two test units was modified to that of one test unit and one shovel test. A shovel test was dug in order to confirm the presence of fill continuing across the subject property.

Data collection consisted of many endeavors. Notes were taken in the field describing the subject property, excavations and findings. All excavation areas and surface historic features were mapped using a measuring tape and compass from fixed points on maps provided by American Samoa Telecommunications. Level forms were filled out for each level encountered. Representative profiles were drawn to scale for each test unit. Soil samples were taken from all layers and placed in zip-lock bags labeled with the appropriate provenience for use in laboratory analyses. Photographs were taken of the subject property along with representative profiles of the test unit. All of these methods in data collection were conducted in order to provide an accurate and detailed visual and written record of the findings on the subject property. These methods also aided in the production of an accurate and detailed report of those findings along with a determination of site usage and significance as well as the impact of future construction endeavors.

There were a number of constraints on the investigation relating to the field investigations. A deep deposit of dense coral fill was present in Amanave which hampered an examination of the deposits below it, as the deposits were too deep to be reached with manual excavations. Additionally, due to progradation, it is possible that cultural deposits could be present at a depth greater than 3m in coastal locations such as Amanave. This depth could not be reached safely through manual excavations. Investigations were constrained at Mt. Olootele as the scope of work only called for a surface investigation. There were also constraints due to the level of technology which the human race has achieved as we approach the third millennium of the Common Era.

Laboratory analyses included a range of diagnostic endeavors. All analyses were conducted according to standard scientific and archaeological methods and recorded on standardized analysis forms. Soils were analyzed according to USDA standards by Michelle Elmore, B.A. in order to obtain a scientific determination of their color and composition. This aided in the distinction of the various stratigraphic deposits as they relate to geological and cultural events on the subject properties. No cultural materials aside from modern debris were found on the subject properties. The modern debris was noted but not collected or analyzed. All notes, analysis forms and materials collected will be properly curated at the ACP offices located at 59-624 Pupukea Road, Haleiwa, HI.
Plates 1 & 2: Views of Amanave and Breakers Point

Plate 1: Excavation of TU 1 at Amanave, view facing Southeast

Plate 2: View facing Northeast of Graveyard at Breakers Point

Subject Property shown in upper left portion of photo.
The methods employed both in the field and laboratory were sufficient in obtaining an accurate determination of the presence or absence of historic properties and their function at Breakers Point and Mt. Ololele. The shovel testing at very close intervals at Breakers Point made it abundantly clear that no cultural properties exist on the subject property at that location. Had there been a site present on the subject property, the shovel tests would have allowed for a determination of the extent of the site across the parcel. Structural remains were identified on the subject property during the surface survey at Mt. Ololele. The test unit and shovel test excavated at Amanave provided an adequate assessment of the absence of cultural materials within the top 1.5m of soil, which is sufficient for the tower construction purposes. However, the methodology employed was not sufficient for testing potential deeply buried deposits, as they could not be safely reached with manual excavations, thus failing to meet the territorial and regional research objectives.

Section 6: Findings

Breakers Point

Twelve shovel test pits (STPs) were excavated at Breakers Point in order to investigate the presence of significant historic properties, in particular, additional graves related to the adjacent graveyard (see Figure 8 and Plate 2). The graveyard contains eleven modern concrete covered graves, only one of which has a name and date. The occupant’s name is Pati Peleafei, b. April 11, 1902 - d. December 3, 1974. An inscription reads:

25. And in your prosperity shall all the families of the earth be blessed. Acts 3:25
O so lau fanau foi e mauia ai aiga uma lava ole Lalofagi.
Alu ia oe male mauia.
Sipepa Peleafei

Upon conducting a surface inspection of the subject property, no grave markers or grave-like depressions were present. No graves were identified during the subsurface testing.

The STPs measured approximately 50cm in diameter and were excavated to a depth of approximately 100cm. All soils were sifted through 1/8th inch mesh screen in order to examine and collect cultural materials from the screen residuum. Soils within the STPs generally contained only one layer consisting of dark brown (10YR 3/2) silty clay. This is somewhat consistent with Nakamura’s descriptions of the soil association in this area (see Section 2). The soils encountered resemble the top layer of the Fagasa family soils (50% of the association), which commonly contains dark brown silty clay above dark brown clay loam and dark brown sandy clay loam, though Nakamura comments “no single profile of Fagasa family soils is typical” (Nakamura 1984:11). However, some of the soils closer to the road were mottled, as if from disturbance,
Figure 8: Project Area at Breakers Point Showing Locations of Shovel Test Pits
consisting of dark brown (7.5YR 3/3) mottled with very dark gray (10YR 3/1) silty clay. The mottling did not appear indicative of grave shafts, as the mottling was continuous over a larger area. In this area, disturbance of the soils is also evident on the surface, having irregular trench-like depressions and berms. No artifacts or features were encountered in any of the STPs. Modern debris, such as cement, plastic and glass, was present in many of the STPs within the top 20cm of soil. Strangely, the ground surface of the subject property was rocky, with angular basalt of poor quality varying in size from gravel to 20cm in diameter, however there was very little to no rock present below the ground surface. This may be due to the grading of Papatele Ridge during the construction of Route 1, wherein rock was blasted and may have been carried up to Breakers Point. This does not appear to be a paving or remnant of a platform, as it continues across the entire top of the ridge.

Amanave

One test unit (TU1) was excavated just outside of the subject property in the village of Amanave in order to investigate the presence of significant historic properties in the area (see Figure 9). TU1 was dug in this location as per instructions by the landowner. The unit measured 1 x 2m and was excavated in 10cm levels to a total depth of 1.5m. All soils were sifted through 1/8th inch mesh screen in order to examine and collect cultural materials from the screen residuum. Multiple layers of fill were encountered (see Figures 10 & 11 and Plates 3 & 4). Layer I measured approximately 15cm in thickness with a maximum depth of 25cm and consisted of dark brown (10YR 3/3) sandy clay loam banded with light yellowish brown (10YR 6/4) slightly loamy sand, with dense coral at the base of the layer. Modern debris was present in this layer. Layer II measured approximately 13cm in thickness with a maximum depth of 43cm and consisted of light yellowish brown (10YR 6/4) slightly loamy sand. Modern debris was present in this layer. Layer III measured approximately 12cm in thickness with a maximum depth of 57cm and consisted of dark brown (10YR 3/3) sandy loam banded with light yellowish brown (10YR 6/4) slightly loamy sand, with a moderate amount of coral. Modern debris was present in this layer. Layer IV measured approximately 7cm in thickness with a maximum depth of 50cm and consisted of dark grayish brown (10YR 4/2) sandy loam with a moderate amount of coral. Layer V measured approximately 100cm in thickness with a maximum depth of 150cm and consisted of very dark grayish brown (10YR 3/2) sandy clay, with extremely dense coral. Due to the difficulty of excavating through the dense coral and the realization that the fill could possibly continue to a depth below which could be manually excavated, it was decided to reduce the area of controlled testing within the unit to that of a 50 cm diameter shovel test. A shovel test pit was dug at the base of the unit in order to facilitate a further determination of the extent of the fill. The fill continued to a depth of 150cm, whereupon excavations ceased. No traditional artifacts were present in the unit. Only modern debris was present.
Figure 9: Project Area at Amanave Showing Locations of Test Unit and Shovel Test Pit

Source: American Samoa Telecommunications (no date)
Figure 10: Profile of Test Unit 1, Amanave (Northeast Face)

Layer I: Dark brown (10YR 3/3) sandy clay loam banded with light yellowish brown (10YR 6/4) slightly loamy sand, some coral

Layer II: Light yellowish brown (10YR 6/4) slightly loamy sand

Layer III: Dark brown (10YR 3/3) sandy clay loam banded with light yellowish brown (10YR 6/4) slightly loamy sand

Layer IV: Dark grayish brown (10YR 4/2) sandy loam, some coral

Layer V: Very dark grayish brown (10YR 3/2) sandy clay, extremely dense coral

KEY

- Grass & Detritus
Figure 11: Profile of Test Unit 1, Amanave (Southeast Face)

Layer I: Dark brown (10YR 3/3) sandy clay loam banded with light yellowish brown (10YR 6/4) slightly loamy sand, some coral

Layer II: Light yellowish brown (10YR 6/4) slightly loamy sand

Layer III: Dark brown (10YR 3/3) sandy loam banded with light yellowish brown (10YR 6/4) slightly loamy sand

Layer IV: Dark grayish brown (10YR 4/2) sandy loam, some coral

Layer V: Very dark grayish brown (10YR 3/2) sandy clay, extremely dense coral

KEY

Grass & Detritus
Plates 3 & 4: Views of Test Unit 1 at Amanave

Plate 3: View to the Southeast of TU 1 at Amanave

Plate 4: View to the Northwest of TU 1 at Amanave
It was decided that a second excavation unit with careful controlled testing of fill would be futile for the research objectives of the project. For this reason, the original scope of work which called for two test units was modified to one test unit and one shovel test. A shovel test was dug in the center of the subject property in order to confirm the presence of fill continuing across the subject property. The shovel test measured 50cm in diameter and was excavated from 0-50cmbs and encountered identical layers of fill as TU1. All soils were sifted through 1/8th inch mesh screen in order to examine and collect cultural materials from the screen residuum. Modern debris was present throughout the shovel test. No artifacts were present in the shovel test.

Mt. Olotele

The remains of a World War II concrete foundation, Site AS-32-005, was located just outside the subject property at Mt. Olotele (see Figure 7). According to the scope of work, the foundation is associated with World War II. Its appearance is similar to that of World War II era structures, having been constructed with a concrete material with a composition similar to that of World War II pillboxes located around the island. It is also known that military activity was conducted at places such as Mt. Olotele during World War II for military defense purposes of communication and/or observation.

The foundation is located across from an existing tower on the opposite side of the access road and is set back into the edge of an overgrown area. The foundation is in the shape of a truncated pyramid, measuring 4 x 3.7m in length with a height of 165cm AGL (above ground level)(see Plate 5 and Figure 12). Four metal screws/posts are present in the corners on top of the foundation. The foundation is upturned, indicating that the foundation has apparently suffered a great deal of disturbance and possibly dislocation.

The entirety of the subject property was surface surveyed. No significant historic properties were identified on the surface. No subsurface testing was conducted as per instructions in the scope of work designed by ASHPO. No surface artifacts were found on the subject property. A Site/Feature form for this site is included in Appendix A of this report.

Section 7: Discussion and Significance Criteria Evaluations

Several conclusions may be made relating to the findings on the subject properties. The subject property at Breakers Point, while suffering a small amount of modern disturbance, does not contain any significant historic properties. The graveyard does not extend onto the subject property. Though construction activities related to World War II defense strategies took place nearby, no evidence remains of any such
Plate 5: View of Site AS-32-005 facing Northeast (World War II Foundation at Mt. Olotele)

View facing Northeast.

Figure 12: Plan View of Site AS-32-005 (World War II Foundation at Mt. Olotele)
activities on the subject property. The methodology utilized in this location was more than adequate to determine the absence of significant historic properties.

Similarly, the subject property at Amanave did not contain any significant historic properties within the top 150cm of soil. It was discovered that the soils consist of fill to a depth that could not be determined during the current investigations. The methodology employed at this location was effective in determining the absence of significant historic properties to the degree at which the projected future construction activities would affect the area. However, the methodology was not effective in determining the presence or absence of deeply buried deposits due to the limitations of manual excavations at achieving such depths. In the recent past, areas along the coastline have been greatly affected by developments associated with road construction, land reclamation, and general disturbances due to construction efforts of various sorts. While it is clear that a great deal of filling and grading accompanied these developments, the depth to which the disturbances associated with the filling would have extended is not known.

The World War II foundation at Mt. Olotele, Site AS-32-005, was found to be greatly disturbed and was not within the subject property. The foundation was likely related to communications and/or surveillance wartime defense strategies. Based on the shape of the foundation and the presence of corner posts, it appears to be a foundation for a communications and/or observation tower. The methodology employed at this location was sufficient for the determination of its presence and condition.

Significance Criteria Evaluations

The archaeological investigations conducted for the proposed telecommunications towers project documented one site (Site AS-32-005) of significance to the interests of historic preservation. This site meets Criterion "A", "C" and "D" of the National Register of Historic Places Criteria (refer to Table 1).

These investigations have concluded that future construction activities would have an "adverse effect" on Site AS-32-005 at M. Olotele. Recommendations have been made that no further archaeological investigations are necessary for this construction project, though mitigation should take place in the form of avoidance of Site AS-32-005.
Table 1: Summary of Significance Criteria Evaluations

<table>
<thead>
<tr>
<th>Site</th>
<th>Description</th>
<th>Significance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-32-005</td>
<td>World War II concrete foundation</td>
<td>A, C &amp; D</td>
</tr>
</tbody>
</table>

Code for Significance Evaluations

A - Site is associated with events that have made a significant contribution to the broad patterns of history.
B - Site is associated with the lives of persons significant in the past.
C - Site embodies the distinctive characteristics of a type, period, or methods of construction; or is the work of a master; or possesses high artistic values; or represents a significant and distinguishable entity.
D - Site has yielded or is likely to yield information important in prehistory or history.
I. IDENTIFICATION

SITE DESIGNATION: 60-(CONO)-(SINO): AS-32-005
Previous Designation (PRNO): NA
Site Name (SNAM): NA
County Name (CONA): Leasina
Village Name (VILL): Olotele Mountain
Landowner (LOWN): American Samoa Government
Address (ADDR): NA

FEATURE DESIGNATION (FEAT): 1
ASIIP Project Number (PROJ): NA
Phone (PHON): NA

II. DESCRIPTIVE INFORMATION

Formal Site/Feature Type (FOTY): Concrete Foundation (World War II era)
Formal Site/Feature Description (FODE): Concrete foundation in truncated pyramidal shape with four metal posts on corners. The foundation has been upturned.

Number of Features (NOFE): 1
Portable Remains (PORE): None
Absolute Date (ADAT): Unknown
Lab Number (LANO): NA
How was depth determined (HDEE): NA

Area (AREA): 148.6 m²
Max. Length (LONG): 40 m
Max. Width (WIDE): 37 m
Max. Depth (DEEP): NA m
Max. Height (HIGH): 165 m

III. LOCATIONAL DATA

UTM Easting (EAST): 536400 m
UTM Northing (NORT): 849600 m
AS Coord./Easting (ASGE): Unknown
AS Coord./Northing (ASGN): Unknown

Verbal Locational Description (LOCA): At the summit of Mt. Olotele, on the east side of the road, set back into the edge of an overgrown area, across from an existing communications tower.

IV. ENVIRONMENTAL DATA

Lowest Elevation (LELE): 1617 ft/493 m
Highest Elevation (HELE): 1617 ft/493 m
Distance to Sea (DSEA): 3000 ft
Distance to Potable Water (DWAT): Unknown
Direction to Sea (DIRS): 0 deg
Direction to Water (DIRW): Unknown deg
Minimum Slope (MISL): 0 deg
Maximum Slope (MASL): 0 deg

SCS Soil Type (SOIL): Oloava silty clay loam (Nakamura 1984)
Geology (GEOL): Volcanic, steeply sloped mountain peak.
Geomorphology (GEOM): Eroded.
Vegetation (VEGE): Mown lawn.

V. INTERPRETATIONS

Functional Site/Feature Type (FUTY): Communication/Observation Site.
Functional Site/Feature Interpretation (FUPI): Defensive site related to World War II.
Temporal Interpretation (ERA): World War II era
Cultural Affiliation (AFFI): United States Military Forces
VI. REFERENCES
Survey Report (SREP): Results of an Inventory Survey with Subsurface Testing for Properties Located at Breakers Point, Mt. Olomolo and Ananave, Island of Tutuila, American Samoa - April 1999
Evaluation Report (ERE): Same as above
Mitigation Report (MREP): NA

VII. STATUS
Condition (COND): Disturbed (upturned)
National Register Eligibility (NREG): Eligible
Recommendations (REC): Determination of “adverse effect” to be mitigated through avoidance during construction.

VIII. RECORER INFORMATION
Report Title (REPT): Results of an Inventory Survey with Subsurface Testing for Properties Located at Breakers Point, Mt. Olomolo and Ananave, Island of Tutuila, American Samoa - April 1999
Name of Recorder (RNAM): Michelle Elmore & Joseph Kennedy
Organization (ONAM): Archaeological Consultants of the Pacific, Inc.
Project Name (PROJ): American Samoa Telecommunications Project
Date Recorded (RDAT): January 20th, 1999

* Please use continuation sheets for comments or for any additional information you need or want to include with this form.
* Each SFF must be accompanied by a scaled and oriented Site/Feature plan and section or elevation where appropriate.

IX. LOCATION MAP
(Attach below, a copy of the section of the USGS Quadrangle showing location of the historic property documented on this form)

Include north arrow, scale, and name of quadrangle

* see Elmore & Kennedy 1999: Figure 4
Bibliography, continued

Leach, H.M. and D.C. Witter


McDougall, I.


Moore, J.R., and J. Kennedy


1997a  "Results of an Archaeological Cultural Resource Evaluation (Phases I & II) for the Aua-Afono Road and Drainage Reconstruction Project, Ma'uputasi County, Tutuila Island, American Samoa."  Report on file, American Samoa Historic Preservation Office, Pago Pago.

1997b  "Results of an Archaeological Cultural Resource Evaluation (Phases I & II) for the Harden Tank Farm, Phase II Project at the American Samoa Petroleum Storage Facility Located in Ma'uputasi County, Tutuila Island, American Samoa."  Report on file, American Samoa Historic Preservation Office, Pago Pago.
Bibliography, continued

Moore, J.R., and J. Kennedy, continued

Nakamura, S.

Nunn, P.D.

Shapiro, W., and P. Cleghorn

Stearns, H.T.

Thompson, A.
Appendix A
Jan 11, 1942
Attack on Pago Pago by Japanese

1. Ironically his store of Frank Shimazake (Japanese resident)

2. Minor damage naval dispensary

3. One Centipede Rm officer on body minor injuries

4. Sea wall next to customs house

5. Others into the harbor

Part of the attack on Guadalcanal was stage from Pago Pago.

Marines outnumbered inhabitants

Poyers school ➔ Ship repair unit

Two lane roads introduced (Previously single lane road with turn out) Road from Alofaa to Amouli to Tula was built during WWII. Pago to Febaru Road.
Communication & Radar on mountain at A'loao. Levelled a square mile & built the road up there.

Tabune Air Base = Leone Air base.

Tan & farm in Uthei' + Au

Naval Mobile Hospital No. 3

MOB

Mapusaga

Many Construction Projects

Receipts of $56, 871, 333. 1941

1,044,430 1945