An Archaeological Phase I Pedestrian Survey of the Ofu-Glosega Road Project
by
Kevin Donald, P.I.
P.O. Box 5695
Pago Pago, American Samoa 96799
Phone Number: 733-1558

This report is prepared for:
American Samoan Power Authority
American Samoa Government
Pago Pago, American Samoa 96799
Phone Number: (684)644-2772
Contract Number: FHWA-541103
11-17-95

and

McConnel-Dowell Construction Company
P.O. Box 4664
Pago Pago, American Samoa 96799

FY 1996

Received December 1995
An Archaeological Phase I Pedestrian Survey of the
Ofu-Olosega Road Project

by

Kevin Donald, P.I.
P.O. Box 5695
Pago Pago, American Samoa 96799
Phone Number: (684)733-1558
An Archaeological Phase I Pedestrian Survey of the Ofu-Olosega Road Project

by

Kevin Donald, P.I.
P.O. Box 5695
Pago Pago, American Samoa 96799
Phone Number: 733-1558

This report is prepared for:

American Samoan Power Authority
American Samoa Government
Pago Pago, American Samoa 96799
Phone Number: (684)644-2772
Contract Number: FHWA-541103
11-17-95

and

McConnel-Dowell Construction Company
P.O. Box 4664
Pago Pago, American Samoa 96799
ABSTRACT

American Samoa Power Authority (ASPA)/Civil Highways Division of the Government of the Territory of American Samoa proposes to improve approximately 3600 ft. of existing roadway extending East/Northeast from the connecting causeway of Ofu-Olosega in the Manu’ a Group of American Samoa. The purpose of this survey was to determine the presence or absence of culturally significant artifacts within the proposed survey area.

This study supplies the results of an archaeological investigation along the sides of the road. The study provides the conclusions of a literature search, the development of a research design and methods, findings, as well as recommendations based on site-significance evaluations, Section 106 compliance of the National Historic Preservation Act (NHPA) of 1966, as amended and the National Register Criteria (National Register Bulletin #15). Finally, after a systematic pedestrian survey of the project area the results yielded no archaeologically significant sites, artifacts or features.

The relationship between this pedestrian survey and the next phase of the archaeological responsibility is discussed. Guidelines and recommendations are also suggested. The recommendations include subsurface activities, in order to minimize Constructor activity leading to potential Section 106 non-compliance. Methodology concerning test excavations are also discussed.
Table of Contents

A. Abstract ... i
B. Introduction ... 1
C. Environmental or Physical Setting 7
D. Prehistoric and Historic Background 15
E. Research Design ... 19
F. Methods .. 21
G. Findings .. 25
H. Conclusion ... 27
I. Bibliography .. 28

FIGURES

Figure 1. Map of Olosega and Ofu Islands 2
Figure 2. Project Area Map 3
Figure 3. Archaeological Sites of Ofu/Olosega 17
Figure 4. Transect Directionals/HPAs, MPAs, and LPAs .. 24
Figure 5. Map of "Washed Out" Area 26
PHOTOS

PHOTO 3 - Asagatai Point. West Facing. Page 5.

PHOTO 4 - Asagatai Point. NW Facing. Page 5.

PHOTO 7 - Existing Road at Asagatai Point. NW Facing. Page 10.

PHOTO 8 - Existing Road & Ocean-side Environ. NW Facing. Page 10.

Introduction

On October 28th and 29th an archaeological pedestrian survey was conducted by Kevin Donald M.A. (Principal Investigator) along adjacent (north and south) flanks of a 3600' section of road commencing at the eastern edge of Ofu at Asagatai Point, extending east for approximately 5/8ths of a mile, just shy of Mafafa. Both sides of the road for approximately 3600ft were systematically examined for sites, features and artifacts to satisfy Section 106 compliance and subsequently avoid any costly construction delays.

Ofu is a high relief volcanic island with its tallest peak, Mt. Tumu, reaching approximately 1600 ft from sea level. Mt. Tumu and Sunuitao Peak rise rapidly from sea level resulting in narrow flat strips of land sandwiched between the inland cliffs and the sea. In the past as well as now, these narrow flat strips of land provided humans with habitable terrain. Similar circumstances govern the prevalent path of the road.

The construction project pertains to the improvement of the existing road. The graded road with a coral/sand/rock base runs along the northern costal plain of Ofu approximately 3600'. The final route of the proposed road, according to the present plans reviewed on-site, will deviate little from the existing road. The new paved surface will be 18' wide with culverts along the sides to aid with proper drainage. Following the contour of the project area, along the northern or costal side of the road, will be a shoreline revetment. Following the contour of the project area, along the southern or inland side of the road, will be a trench excavated for water and electric lines as well as the establishment of "pull boxes" at intervals not specified in the current plans. These areas of known impact were carefully assessed for prehistoric and historic cultural materials during the survey and will be discussed below.
Figure 1. Location map of Ofu and Olosega islands, Manu’a Group, American Samoa.
PHOTO 1 - Sunuitao Peak, Ofu and Mataala Ridge, Olosega. East Facing

PHOTO 2 - Leolo Ridge, Ofu. NW. Facing
PHOTO 5 - Asagatai Point. SW Facing

PHOTO 6 - Asagatai Point. SW Facing
Environmental Setting

A. Pleistocene and Holocene Environments

Many volcanic archipelagoes of the Pacific are situated linearly emanating from "hot spots" or magma plume on the floor of the Pacific Plate. As the Pacific Plate shifts slowly in a west/northwest direction active volcanic islands move off the "hot spot" and a new island is formed. Consequently, islands found in this environ comprise a "plume trace" of increasing age from east to west (Marsh and Dozier 1981). Indeed, the Samoan chain illustrates a typical instance of linear, "hot spot" progressive volcanism, with the islands increasing in age from east to west. Recent renewed volcanism on Savai'i is evidently due to the proximity of the western end of the archipelago to the Pacific Plate margin (Kirch 1993).

Initial studies of Ofu placed its' geologic history into the lower Pliocene. However, recent work by McDougall (1985) confirmed through K-Ar dating the relative recent age of Ofu (averaging 0.3 Ma). Ofu's formation is owed to "volcanic cones that were buried by lava flows from two coalescing shields" (Stice and McCoy 1968:443). "After summit collapse of the shields, volcanism decreased so that a sea cliff about 300 feet high was cut around the island" (1968:456). Western Ofu witnessed renewed volcanism which resulted in the formation of the tuff cone of Nu'utele Islet as well as the deposition of hawaiite and olivine basalt flows into deeply eroded stream valleys.

It has been globally recognized that a rapid rise in sea levels followed the end of the Pleistocene (Fairbridge 1961; Shepard 1963). Controversial eustatic sea-level curves in the Pacific region during the mid-to late-Holocene were synthesized by Bloom (1980, 1983) along with substantial geomorphic and radiometric evidence from a variety of islands to support a +1-2 meter high sea level during the period between about 4-2 kyr B.P. (Kirch 1993; Nunn 1990; Miyata 1990; Ash 1987).
B. Current Environmental Setting

Ofu is a high relief volcanic island with its tallest peak, Mt. Tumu, reaching approximately 1600 ft from sea level. Mt. Tumu and Sunuitao Peak rise rapidly from sea level resulting in narrow flat strips of land sandwiched between the abrupt inland cliffs (on average ranging from 300-500 meters) and the sea. In the past as well as now, these narrow flat strips of land provided humans with habitable terrain.

Inland, towards the talus slope, one begins to encounter volcanic cobbles and boulders distributed over the land surface, evidence of the dynamic instability of the high cliffs of Sunuitao Peak that tower over the gentle slope that makes up portions of Asagatai Point and follow the northeastern extreme of the project area. Some of these boulders are several meters in diameter and can fall with considerable destructive force. The ground surface closest to the talus is gravelly clay-loam with no calcareous components present. Rather quickly, one arrives at the base of the talus slope, an imposing and unstable jumble of boulders rising steeply toward the cliff. In this area grows a tangle of Hibiscus tiliaceus and sparse forest trees such as Erythrina variegata.

Forging through bands of Pandanus and Hibiscus tiliaceus shrubs, one enters the main extent of the coastal terrace, a zone of intensive economic utilization through arboriculture and root crop gardening. Commencing on the inland side of the road, and extending across the width of the coastal terrace to the base of the talus slope is the main zone of economic plants. Coconut palms dot the area, especially toward the seaward half of the zone, where the soil is sandier. The breadfruit tree, Artocarpus altilis, beginning near the road, is the main upper story dominant across the terrace. Under and between the breadfruit and coconuts are planted a number of fruit and root crops, the most important being Eumusa bananas and the large aroid, Alocasia macrorrhiza. Some taro, Colocasia esculenta, and the historically introduced American aroid Xanthosoma sagittifolia, are also found. The Alocasia aroids are often densely planted in clearings which, after cropping are secondarily planted in bananas. In some areas, the understory beneath the coconut palms and breadfruit trees is a tangle of second growth shrubs, dominated by Hibiscus tiliaceus and Macaranga stipulosa. Other useful tree occurring less frequently in this zone include moso’oi (Cananga odorata), the flowers of which are used for scenting coconut oil, and fisoa (Colubrina asiatica), which has medicinal value and can be used as a soap substitute.
This zone of tree, fruit, and root crops also exhibit a high frequency of feral or naturalized species which are commonly cultivated in Oceanic agricultural systems. These include the "ti" plant, *Cordyline fruiticosum*, the arrowroot, *Tacca leontopetaloides*, the bitter yam, *Dioscorea bulbifera*—which twines over the shrubs and trees of the area. All of the plants are recognized by the Ofu people as having edible subterranean root and tuber structures and are regarded as famine resources. Barrou (1965) has suggested that these complex of plants are indicators of earlier cultivation practices in the Pacific Islands (Kirch 1993)

Moving towards the sea, one crosses the crest of the present beach ridge or berm, lying between the beach slope and the sandy road. This extremely narrow zone is covered with a thick tangle of vegetation. Beginning at the seaward edge of the coastal road to the high-water mark is a zone dominated by halophytic, littoral species. Vines like *Canavalia maritima* and *Ipomoea pes-caprae* trail over the unstable sands. Discussions with local residents, the severe destruction caused by Hurricane Val, and recent evidence of geomorphological shoreline deposition suggest that the present beach ridge is of no great antiquity.

Examination of the beach slope suggest dynamic processes presently at work along the land-sea interface. At the foot of the beach slope in various places are exposed layers of beach rock, made up of sand and coral rubble cemented with calcium carbonate (CaCO3). Such beach rock deposits can form quickly under tidal conditions of continual wetting and drying within active beach ridges. There are also portions of the project area that allow minimal space between the abrupt talus slope, the existing roadway and the erosion scarp near exposed beach rock. Evidence of extreme and dynamic erosive episodes is exhibited in the large boulders that rest on the coral reef platform.

On Ofu Island, where flat land comprises less than nine percent of the total area, the economic importance of the minimal gentle slope adjacent to Asagata Point to the human population cannot be overemphasized. It is certain that this area, prehistorically as well as currently, exhibit patterns of intensive cultivation. Severe destruction caused by Hurricane Val and recent shoreline deposition, as well as the recent construction of modern foundation for homes and a shed (four structure), horticultural redeposition, and the cutting of the existing roadway pose challenges to determining just when these patterns of intensive agriculture first developed.
PHOTO 7 - Existing Road at Asagatai Point. NW Facing

PHOTO 8 - Existing Road & Ocean-side Environ. NW Facing
PHOTO 9 - Existing Roadway. East Facing

PHOTO 10 - Example of Island-side Environ. West Facing
PHOTO 11 - Example of Island-side Environ. West Facing
PHOTO 12 - Ocean-side Environ @ Asagatai Point. East Facing
PHOTO 13 - Example of Existing Revetment. West Facing
Prehistoric and Historical Background

In 1962, Kikuchi and Y. Sinoto of the Bishop Museum extended an archaeological survey of Tutuila and Aunu'u Islands to the Manu'a Group. In 1963 Kikuchi completed a survey of surface ruins of American Samoa. In 1988 Hunt and Kirch an archaeological reconnaissance of the Manu'a Group. In 1992 Best completed an archaeological reconnaissance survey and excavation of the Ofu-Olosega Highway Link and that same year Cook completed an Environmental Assessment of the Ofu-Olosega Road Upgrade Project. In 1995 Kennedy (Archaeological Consultants of the Pacific) completed a Phase II assessment of cultural properties between Sili Village and the causeway. Of these investigations, the most extensive investigation on Ofu Island was the recent investigations of Kirch and Hunt (1993) of the To'aga Site. The To'aga Site, approximately 1-1.5 miles from the western portion of the project area has yielded valuable information concerning settlement patterns, ceramic sequences, reconstruction of ancestral Polynesian culture, prehistoric environmental change, the establishment of a temporal framework and prehistoric sequence for the Manu'a Group. Consequently, ceramics sequences of "Polynesian Plainware", C-14 dating of associated charcoal coupled with marine shell has placed occupation of Manu'a beginning near 2700 yr. B.P. (Kirch 1993, p.89).

The project area is flanked by two prehistoric sites (AS-13-27 and AS-12-9). Best (1992) describes AS-13-27 as "a terrace situated on the summit bend of the concrete road section which runs through the rock-cutting between Faalaaga and Sunultao. The terrace is down over a 10' bank, is 33' long and 13' deep, the long axis is 230 degrees. Rock falls have intruded on the upelope side. This site is one of the few known features inland on the hillslopes above the beaches and coastal flats, and thus is important in the overall settlement strategy (Best 1992, p. 22)." AS-12-9 is described by Best (1992) as a "grinding stone". He reports that "this stone is known to some local people as a kava mixing rock" or he suggest the stone could "provide (sic) information on the technology of adze production."

Historically, arboriculture, root crop harvesting, exploitation of accessible marine life and the establishment of permanent dwellings summarize the current land-use strategies for the gentle sloping landscape immediately west of Asagat'ai Point. "Maps", a local resident and occupant of the above mentioned area, confirmed these land-use strategies.
The convenient location to Asagatai Point and Tamatupu Point (on Olosega) resulted in the (circa.1960) construction of a causeway, subsequently connecting, by road, the islands of Olosega and Ofu.

The existing roadway, has been cut along the northern coast of Ofu and further east of Asagatai Point (near Sunu’itao Peak) has been cut, in places, from the hillside.

Successive hurricanes, Tusi (1987), Ofa (1990) and Val (1991) have reeked havoc, in general, to the northern shores of Ofu; but particularly to the project area. Mapa informed us that all of the area on the ocean-side of the existing road in front of his house was removed during Val. On the inland side of the road near his home he pointed to the waterline immediately after Val, which was located less than 50 meters from the northeast corner of his present dwelling and approximately 100 meters from the existing road.

On Ofu Island, where flat land comprises less than nine percent of the total area, the economic importance of the minimal gentle slope adjacent to Asagatai Point to the human population cannot be overemphasized. It is certain that this area, prehistorically as well as currently, exhibit patterns of intensive cultivation. The recent construction of modern foundation for homes, a shed (a total of four major ground-disturbing structures), horticultural redeposition, and the cutting of the existing roadway lends extremely supportive evidence to suggest long-term cultural use of the project area.
Figure 3. Ofu and Olosega Islands showing archaeological sites
PHOTO 14 - NW Coast of Olosega Showing Alei Ridge and the General Areas of Sili, Lalomoana & AS-12-9.
Research Design

American Samoa Power Authority (ASPA)/Civil Highways Division of the Government of the Territory of American Samoa proposes to improve approximately 3600 ft. of existing roadway extending East/Northeast from the connecting causeway of Ofu-Ofu-Olosega in the Manu‘a Group of American Samoa. The purpose of this survey was to determine the presence or absence of culturally significant artifacts within the proposed survey area.

This study supplies the results of an archaeological investigation along the sides of the road. The study provides the conclusions of a literature search, the development of a research design and methods, findings, as well as recommendations based on site-significance evaluations, Section 106 compliance of the National Historic Preservation Act (NHPA) of 1966, as amended, and the National Register Criteria (National Register Bulletin #15).

Foremost, the archaeological Phase I pedestrian inventory survey of the Ofu-Olosega Road Project was designed to address the Cultural Resource Management concerns of the American Samoa Historic Preservation Office. Furthermore, the pedestrian inventory survey was regarded as an opportunity to address research problems of the project area, the island of Ofu and the surrounding region.

The research strategies in the field were designed to deal with the following research problems:

1. The determination of the presence or absence of culturally significant surface artifacts, features or sites located within the project area.

2. The determination and assessment of the project area as a valuable archaeological resource.

3. The assessment and significance of the archaeological impact of road, culvert, revetment and trench construction within the project area.

4. The determination of the relationship of past and present settlement patterns and other land-use strategies within and adjacent to (i.e. To‘aga, The Manu‘a Group, American and Western Samoa) the project area.
To summarize, the systematic pedestrian field study of the project area was oriented to the research problems listed above. The pedestrian inventory survey was regarded as an opportunity to address research problems of the project area, the island of Ofu and the surrounding region. These research problems were additionally considered in respect to the significance-assessments dictated by Cultural Resource Management regulations, compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, and the American Samoa Historic Preservation Office.
Methods

Initially, a literature search designed to place the project area into an archaeological context was conducted. Furthermore, the literature search provided a basis for the principal investigator’s understanding of previous geological, archaeological, and cultural activity within the project area. USGS topographic maps as well as construction plans for the proposed upgrading of the existing road were reviewed prior to departure to the project site. Resulting from this review of topographical maps of the project area, specific "areas" were established within the boundary of the project expanse before going to the project site. These areas and their specifications are listed below:

1. "High-Probability Areas" (HPAs) - land ranging in slope from 0-25 degrees and having a high (51-100%) potential for yielding culturally significant material.

2. "Medium-Probability Areas" (MPAs) - land ranging in slope from 25-40 degrees and having an average (15-50%) potential for yielding culturally significant material.

3. "Low-Probability Areas" (LPAs) - land ranging in slope from 40-75 degrees and having little to no (<15%) potential for yielding culturally significant material.

A systematic survey of the ground surface of the project area was accomplished using a combination of several approaches. Each approach was determined by one main variable, ground slope. Secondary variables (i.e. geomorphology and vegetation density) were also implemented when environmental conditions warranted their consideration.

Surface areas ranging in slope from 0 degrees to 25 degrees were regarded as "High Probability Areas", due to the scarcity of habitable terrain that characterizes Ofu Island. "High-Probability Areas" are defined as areas ranging from 0 degrees to 25 degrees in slope and, thus, having a "high" potential for yielding cultural materials significant in the determination of prehistoric or historic human occupation. Within the project domain, "High-Probability Areas" are presently used by the local inhabitants. "High-Probability Areas" make up about 20% of the total expanse of the project area.
"Medium Probability Areas" are characterized by surface areas ranging in slope from 25 degrees to 40 degrees and having an "average" potential for yielding culturally significant material. "MPAs" are sometimes exploited as plantations today despite the fact that the ground surface is composed of loose rock. "Medium Probability Areas" make up about 5% of the total expanse of the project area, due to the abruptness of the topography within the project sphere.

"Low Probability Areas" are characterized by surface areas ranging in slope from 40-75 degrees and having "little to no" potential for yielding culturally significant material. Steep slopes and dynamic geomorphological processes also characterized "LPAs" within the scope of this particular project. Despite a gentle slope (<10 degrees), a portion of the flat area (approximately 400ft from Asagatai Point inland), north of the existing road was determined to be of little archaeological value because of its recent deposition. This is an example of a secondary variable's effect on the research strategy. "LPA's" make up about 70% of the project area.

Within the "HPAs" of the project, northwest transects 30 meters in width were made every 20 meters. The same survey strategy was implemented for the "MPAs". These transects ran at approximately a 20 degree angle to the road. In the "LPAs" two transects approximately 3600ft long were made (where topographic conditions allowed), following the contour of the existing roadway. Portions of the project area who's topography ranged from 40-70 degrees in slope was surveyed from the road. The principal investigator's strategy, here, was to determine the presence or absence of culturally significant material by searching the talus slopes for flake material indicative of a quarry source or screening the thick-bush area for evidence of terracing.

While ground slope remained the most determinant variable in implementing systematic field methods (steep slopes led to limiting access to portions of the project sphere), vegetation density also played an important role. Without extensive clearing of ground cover and other vegetation, some "HPAs and MPAs" had very poor visibility. As was stated during the description of "LPAs", geomorphology also played an important role as a variable in implementing Phase I field strategies. Despite these limitations the field methods employed in terms of the research objectives served as adequate techniques for determining the presence or absence of culturally significant materials.
Upon the location of any culturally significant artifact, feature and/or site, evaluations will be made according to the criteria stipulated in the National Register Bulletin 15. Upon further assessment adequate information will be gathered to determine whether an historic property is eligible for inclusion on the National Register of Historic Places.

Code For Significance Evaluation Criteria

- **NS** - Not Significant
- **NLS** - No Longer Significant
- **A** - Site Reflects Major Trends in History
- **B** - Site is Associated w/ the Life of a Significant Person
- **C** - Site is an Excellent Example of a Site Type
- **D** - Site Likely to Yield Important Scientific Data
- **E** - Site has Cultural Significance (i.e. burial)
Findings

After careful implementation of the research design and methodology described above, no findings of prehistoric or historic archaeological data were located within the confines of the project area.

There were a series of linear postholes adjacent to the roadway, in a frequently used driveway of Mapa's home. It was later determined by the positioning of the holes (within the "washed out" area) that they were no older that 5 years. No other surface features were located within the project area.

It is likely, but not certain, that the "washed out" area would not yield any potential subsurface artifacts. However, there has been no professional study addressing, specifically, the impact of soils and soil redeposition within the project area.

Therefore, "deep testing" could be beneficial in determining the presence or absence of culturally significant material as well as the extent of the destruction of Hurricane Val on a vital portion of the project area.

The "washed out" area, in relation to the revetment, is adjacent to the existing roadway shore protection. Based on the extent of the "washed out" area, the proposed revetment will pose little threat to uncovering archaeologically significant material.
Conclusion

A. Recommendations for the Archaeological Phase I Pedestrian Survey of the Ofu Road Project

1). It is recommended that Phase II of the Ofu Road Project include "Deep Testing" for the culvert, pull box, and trench areas. This recommendation is justified by the following reasons:

a. Flat areas, conducive to human habitation on Ofu make up less than 10% of the Island's topography.

b. The vertical extent of the "washed out" areas have yet to be established.

2). McConnell-Dowell Ltd., ASPA, ASHPO and other parties involved in the road project should be coordinated among themselves to insure the required mitigative measures are taken when unexpected archaeological data arise.

3). An archaeological awareness program should be set up to bring current constructors up-to-speed on archaeological knowledge that is critical to an appreciation of the island's past as well as constructors being able to avoiding costly construction delays.
Bibliography

Ash, J.
1987

Best, S.
1992

Bloom, A.L.
1980

Bloom, A.L.
1983

Cook, S. de C.
1992
Environmental Assessment: Ofu-Olosega Road Upgrade Project AS-F-ER-020(2). Ms on file Department of Parks and Recreation. Pago Pago, American Samoa.

Fairbridge, R.W.
1961

Hunt, T.L. and P. Kirch
1988

Kennedy J.
1995
An Archaeological Assessment of Cultural Properties in Phase II of the Ofu-Olosega Road Between the Causeway and Sili Village. Ms on file Department of Parks and Recreation, Pago Pago, American Samoa.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirch, P.V., Hunt, et al.</td>
<td>1993</td>
<td>The To’aga Site. Three Millennia of Polynesian Occupation in the Manu’a Islands, American Samoa. Contributions of the University of California Archaeological Research Faculty, Berkeley, Number 51.</td>
<td></td>
</tr>
<tr>
<td>Marsh, William M. and Jeff Dozier</td>
<td>1981</td>
<td>Landscape: An Introduction to Physical Geography, Massachusetts, Addison-Wesley Publishing.</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D. NADB-REPORTS RECORDING FORM

All fields except DOCUMENT NUMBER should be completed. The document number will be assigned using the NADB-Reports program. The report recording form follows the sequence of steps for adding new records.

1. DOC. NO. __________________

2. SOURCE __________________ AND SHPO-ID __________________
Where appropriate: Source is either D (automated bibliographic system other than NADB-Reports) and R (manual bibliographic system) SHPO_ID is D or R number for cross-referencing purposes.

3. AUTHORS Alex Jones + Kevin Donald

4. YEAR 1995
Year published (avoid n.d. if possible)

5. TITLE Archaeological Phase I Pedestrian Survey of the 17TH-OCCUPATION ROAD-PROJECT

6. FILED AT (address where copy of report is on file) American Samoa Historic Preservation Office, Department of Parks and Recreation, Asa

7. PUBLICATION TYPE (circle one)
 1. Monograph or Book
 2. Chapter in a Book or Report Series
 3. Journal Article
 4. Report Series
 5. Dissertation or Thesis
 6. Paper presented at a Meeting
 7. Unpublished or Limited Distribution Report
 8. Other

8. INFORMATION ABOUT PUBLISHER/PUBLICATION
 Follow the American Antiquity style guide published in 1983, Vol. 48, pp. 438-441, for the type of publication circled.
9. STATE/COUNTY (referenced by report. Enter as many states, counties, or towns, as necessary. Enter all, if appropriate. Only enter Town if the resources considered are within the town boundaries.)

<table>
<thead>
<tr>
<th>STATE 1</th>
<th>COUNTY</th>
<th>District</th>
<th>TOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ofu + Nosega</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE 2</th>
<th>COUNTY</th>
<th>TOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE 3</th>
<th>COUNTY</th>
<th>TOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuation, see 14.

10. WORKTYPE (circle all that are appropriate)

- 01 Cultural Resource Management Plan
- 31 Archeological Overview and Assessment
- 32 Archeological Identification Study
- 33 Archeological Evaluation Study
- 34 Archeological Data Recovery
- 35 Archeological Collections and Non-Field Studies
- 999 Other Non-Archeological Studies

Furnish a keyword in keyword category 1 to identify nature of this non-archeological study.

11. KEYWORDS and KEYWORD CATEGORIES

- 0 Types of Resources (or "no resources")
- 1 Generic Terms/Research Questions/Specialized Studies
- 2 Archeological Taxonomic Names
- 3 Defined Artifact Types
- 4 Geographic Names or Locations
- 5 Time
- 6 Project Name/Project Area
- 7 Other keywords

Enter as many keywords (with the appropriate keyword category number) as you think will help a person (1) who is trying to understand what the report contains or (2) who is searching the database for specific information.

Continuation, see 14.
APPENDIX D. NADB-REPORTS RECORDING FORM

All fields except DOCUMENT NUMBER should be completed. The document number will be assigned using the NADB-Reports program. The report recording form follows the sequence of steps for adding new records.

1. **DOC. NO.**

2. **SOURCE** ____________ AND **SHPO-ID** ____________
 Where appropriate: Source is either D (automated bibliographic system other than NADB-Reports) and R (manual bibliographic system) SHPO_ID is D or R number for cross-referencing purposes.

3. **AUTHORS** Kevin Donald

4. **YEAR** 1995
 Year published (avoid n.d. if possible)

5. **TITLE** Archaeological Phase I Pedestrian Survey of the Ofu–Olosega Road–Project

6. **FILED AT** (address where copy of report is on file) American Samoa Historic Preservation Office Dept. of Parks & Recreation ASG Pago Pago, American Samoa 96799

7. **PUBLICATION TYPE** (circle one)
 1. Monograph or Book
 2. Chapter in a Book or Report Series
 3. Journal Article
 4. Report Series
 5. Dissertation or Thesis
 6. Paper presented at a Meeting
 (7) Unpublished or Limited Distribution Report
 8. Other

8. **INFORMATION ABOUT PUBLISHER/PUBLICATION**
 Follow the *American Antiquity* style guide published in 1983, Vol. 48, pp. 438-441, for the type of publication circled.
9. **STATE/COUNTY** (referenced by report. Enter as many states, counties, or towns, as necessary. Enter all, if appropriate. Only enter Town if the resources considered are within the town boundaries.)

 STATE 1 | **COUNTY** | **District #2** | **TOWN** | **Otu & Olasega**
 | | | |

 STATE 2 | **COUNTY** | **TOWN** |
 | | |

 STATE 3 | **COUNTY** | **TOWN** |
 | | |

 Continuation, see 14.

10. **WORKTYPE** (circle all that are appropriate)
 - 01 Cultural Resource Management Plan
 - 31 Archeological Overview and Assessment
 - (32) Archeological Identification Study
 - 33 Archeological Evaluation Study
 - 34 Archeological Data Recovery
 - 35 Archeological Collections and Non-Field Studies
 - 999 Other Non-Archeological Studies

 Furnish a keyword in keyword category 1 to identify nature of this non-archeological study.

11. **KEYWORDS and KEYWORD CATEGORIES**
 - 0 Types of Resources (or "no resources")
 - 1 Generic Terms/Research Questions/Specialized Studies
 - 2 Archeological Taxonomic Names
 - 3 Defined Artifact Types
 - 4 Geographic Names or Locations
 - 5 Time
 - (6) Project Name/Project Area
 - 7 Other keywords

 Enter as many keywords (with the appropriate keyword category number) as you think will help a person (1) who is trying to understand what the report contains or (2) who is searching the database for specific information.

 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |

 Continuation, see 14.